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Abstract—A low-power and high-performance 4-way 32-bit
stream processor core is developed for handheld low-power
3-D graphics systems. It contains a floating-point unified matrix,
vector, and elementary function unit. By exploiting the logarithmic
arithmetic and the proposed adaptive number conversion scheme,
a 4-way arithmetic unit achieves a single-cycle throughput for
all these operations except for the matrix-vector multiplication
that takes 2 cycles per result, which were 4 cycles in conventional
way. The processor featured by this functional unit and several
proposed architectural schemes including embedded register
index calculations, functional unit reconfiguration, and operand
forwarding in logarithmic domain achieves 19.1% cycle count re-
duction for OpenGL transformation and lighting (TnL) operation
from the latest work.

The proposed stream processor core is integrated into a 3-D
graphics SoC as a vertex shader to show its effectiveness. The en-
tire SoC is fabricated into a test chip using 1-poly 6-metal 0.18 m
CMOS technology. The 17.2 mm� chip contains 1.57 M transistors
and 29 kB SRAM. The stream processor core takes 9.7 mm� and
dissipates 86.8 mW at 200 MHz operating frequency. It shows a
peak performance of 141 Mvertices/s for geometry transformation
(TFM) and achieves 17.5% performance improvement and 44.7%
and 39.4% power and area reductions for the TFM from the latest
work.

For power management of the SoC, the chip is divided into the
triple power domains separately controlled by dynamic voltage
and frequency scaling (DVFS). With this scheme, it shows 52.4 mW
power consumption at 60 fps, 50.5% power reduction from the
latest work.

Index Terms—GPU, handheld systems, logarithmic arithmetic,
low-power circuits, power management, stream processor, vertex
shader, 3-D computer graphics, 3-D graphics processor.

I. INTRODUCTION

R EAL-TIME 3-D graphics have been widely adopted on
the handheld devices such as the third-generation (3G)

cellular phones and personal digital assistants (PDAs). How-
ever, the realization of the 3-D graphics on these power- and
area-limited systems has been a challenging issue because of the
inherently high computational complexity of the 3-D computer
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graphics. Consequently, the standard embedded 3-D graphics
application programming interfaces (APIs) like OpenGL-ES [1]
and Direct3D-Mobile [2] were defined with the fixed function
graphics pipelines to provide a higher graphics performance
within limited power and area overheads. Furthermore, in the
latest versions of these APIs, they introduced the programma-
bility into the graphics pipeline to support the increasing
demands for various and more realistic 3-D graphics effects
even on the handheld devices. Accordingly, there have been
several recent works realizing the programmable 3-D graphics
pipeline within limited power and area budgets [3]–[7]. For the
programmable graphics, the numerical stream processor cores,
known as shaders, are incorporated in their pipeline stages.
However, the programmable shaders in the pipeline caused
large power and area overheads because their datapath cannot
be tailored to a specific function and they require additional
program and data storages. In this work [8], [9], a power- and
area-efficient embedded stream processor core is proposed to
reduce the overheads of the programmable graphics pipeline
by adopting the logarithmic arithmetic scheme for its datapath
design. The proposed stream processor core is integrated into a
handheld graphics processing unit (GPU) as its vertex shader
in order to show its effectiveness.

A. Backgrounds

The 3-D computer graphics produces virtually realistic
scenes by rendering elaborately modeled 3-D objects. The 3-D
objects are usually modeled out of several triangles and thereby,
the processing of the vertices and pixels for these triangles is the
role of the 3-D graphics pipeline. The pipeline consists mainly
of the geometry and rendering stages. The geometry stage
computes the per-vertex operations related with geometrical
manipulations such as coordinate transformation and intensity
calculation for each vertex. From this results, the rendering
stage sets up the triangle parameters and computes the pixel
attributes like color, coordinates, and depth information.

The stream processing model was proposed to exploit local-
ities in signal processing applications, where data are passed
directly from the producer to consumer in a pipelined manner
[10]. In this model, applications are organized with streams and
kernels; the streams for expressing data and the kernels for com-
putations. A stream is defined as a set of elements of the same
type requiring same computation and a kernel is a series of com-
pute-intensive operations to be applied for each element in the
stream. A stream processor applies a kernel to all the elements
of an input stream and places results on an output stream. In this
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Fig. 1. Vertex shader architecture. (a) Conventional one. (b) Proposed scheme.

model, the stream processor architecture incorporates stream
register files in order to exploit the producer-consumer locali-
ties since the register files provide much higher bandwidth than
on-chip cache or off-chip memory.

In 3-D geometry stage, the vertex shader, a kind of a stream
processor, is defined to process geometry transformation and
lighting kernels on a stream of input vertices and produce an
output vertex stream. This output stream is given to the ren-
dering stage and the final output fragment stream is produced
to realize 3-D graphics scenes.

Fig. 1(a) shows the conventional architecture of the vertex
shader defined in [11]. It incorporates the stream register files
for input and output streams of vertices and the vector and ele-
mentary function units to support the operations for compute-in-
tensive vertex shading kernels. In addition, it includes the tem-
porary register file to preserve the intermediate results from the
processing of vertex shading kernels and the constant memory
to store the coefficients required for the processing.

There have been several works on the vertex shader designs
for low-power 3-D graphics applications [3], [5], [7]. A vertex
shader based on fixed-point (FXP) arithmetic was proposed in
[5]. It adopted the fixed-point arithmetic for the power- and area-
efficient design. However, it suffered from the limited dynamic
range of the fixed-point arithmetic. Although the vertex shaders
in [6] and [7] were based on the floating-point arithmetic, [6] in-
corporated separated vector and elementary function units and

[7] used 16 multiply-and-accumulate (MAC) units, which re-
sulted in significant area and power overheads for resource lim-
ited handheld systems.

B. Overview

The proposed stream processor exploits the logarithmic arith-
metic scheme to reduce the power and area overheads for the
programmable 3-D graphics pipeline. Even though the loga-
rithmic arithmetic carries certain amount of computation errors,
we adopt it for our processor design because the handheld sys-
tems with limited display size can tolerate a reasonable amount
of computation errors. Based on the logarithmic arithmetic and
the proposed adaptive number conversion scheme, the matrix,
vector, and elementary functions are unified into a single 4-way
multifunction unit. The unit achieves a single cycle throughput
for the most of the operations except for the matrix-vector mul-
tiplication which takes 2 cycles for a result. Compared with the
conventional scheme, our processor adopts novel architectural
features depicted in Fig. 1(b) to fully exploit its novel arithmetic
unit. It supports operand forwarding in the logarithmic domain
to reduce the pipeline latency and the computation errors. It
also incorporates the datapath reconfiguration scheme for the
multifunction unit to expand its operation set by allowing user-
defined operations. In addition, it allows the register index cal-
culations for the floating-point operands to be embedded into
floating-point instructions for the reduced cycles per instruc-
tion (CPI). Based on these, our stream processor core shows
17.5% performance improvement for the 3-D geometry trans-
formation, while reducing 44.7% and 39.4% power and area
overheads, respectively, compared with the latest work [7].

The proposed stream processor is integrated into a GPU to
show its effectiveness as a vertex shader. The 3-D graphics SoC
including a RISC processor, a vertex shader, and a rendering en-
gine is divided into triple power domains with dynamic voltage
and frequency scaling (DVFS) scheme, which results in 50.5%
power reduction from the latest work [7].

This paper is organized as follows. The datapath design using
our proposed arithmetic scheme will be discussed in Section II,
and the architecture of the proposed stream processor will be
covered in Section III. The performance evaluation for the pro-
posed processor will follow in Section IV. The integration into
a handheld GPU and the implementation results will be pre-
sented in Section V and finally, we will summarize our work
in Section VI.

II. DATAPATH DESIGN

As shown in Fig. 2, the matrix-vector multiplication takes the
largest operation cycles in OpenGL transformation (TFM) and
transformation-and-lighting (TnL) kernels. Therefore, the op-
timization of the matrix-vector multiplication is critical to im-
prove the geometry processing performance, and thus the data-
path design for our processor is focused on it. There was a prior
work optimizing the matrix-vector multiplication [7]. However,
it incorporated 16 MAC units and required special operand dis-
tribution logic for them to achieve a single-cycle throughput
for matrix- vector multiplication, which resulted in large area
overhead.
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Fig. 2. Operation cycle breakdown for vertex shader kernels.

Fig. 3. Number formats for the HNS. (a) Format for floating-point numbers.
(b) Format for logarithmic numbers.

In this work, a high-throughput 4-way floating-point func-
tional unit is proposed to perform the matrix-vector multiplica-
tion in every 2 cycles, which were 4 cycles in conventional ways
[3]–[6], and achieve a single-cycle throughput for the vector
and elementary functions. The unit exploits a novel implemen-
tation of the floating-point operations such that it works on the
floating-point input and output data while performing the in-
ternal arithmetic in logarithmic domain to reduce its hardware
complexities. This 4-way unit supports the same matrix-vector
multiplication performance with the previous work [7] despite
half the throughput since its operating frequency can be doubled
by its simple hardware exploiting the logarithmic arithmetic.

A. Number System

The proposed arithmetic unit is based on the hybrid number
system (HNS) [12] of floating-point (FLP) and logarithmic
numbers (LNS). In this approach, operations are processed in
the LNS, where they become simple, except for the addition
and subtraction, which become nonlinear and thus are carried
out in the FLP.

1) Number Formats: Fig. 3 shows the number formats of the
FLP and LNS used in this work. The FLP format is the IEEE
single-precision FLP standard representation that consists of
1-bit sign (S), 8-bit exponent (E), and 23-bit mantissa (M). The
most significant bit (MSB) of the mantissa is always 1, which is
the hidden bit.

The LNS format is defined with 34 bits with 1-bit zero (Z),
1-bit sign (S), 8-bit integer (K), and the 24-bit fraction (F). The
Z and S bits are used to indicate whether the corresponding FLP
value is zero or negative since these values have no counter parts
from logarithm. The 24-bit fraction part is defined for direct

Fig. 4. Number converters. (a) Logarithmic converter. (b) Antilogarithmic
converter.

conversion from 24-bit mantissa including the hidden MSB of
the FLP format.

2) Number Converters: The logarithmic and antilogarithmic
converters between the FLP and LNS are required for the HNS.
For the 32-bit FLP input , its log-
arithmic number representation is

, where is integer and is
fractional. In the logarithmic converter (LOGC), the nonlinear
term is approximated using piecewise linear ex-
pressions as , where and are the
approximation coefficients for each approximation region . The
multiplication of is implemented with shifts and additions
as . The structure of the LOGC is
shown in Fig. 4(a). The LOGC achieves maximum 0.41% con-
version error using 15 approximation regions.

For antilogarithmic conversion, the FLP counterpart of the
logarithmic number can be represented as

. In the antilogarithmic converter (ALOGC), the integer
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Fig. 5. Programmable multiplication scheme.

part directly becomes the exponent of the FLP number and
the nonlinear term is also approximated by the piecewise
linear expressions as , where and are
the approximation coefficients defined for each approximation
region . The multiplication of is also implemented with
shifts and additions as . The structure of the
ALOGC is shown in Fig. 4(b). The ALOGC achieves maximum
0.08% conversion error using 8 approximation regions.

3) Adaptive Number Conversion: In previous work [13],
8 LOGCs and a Booth multiplier (BMUL) were incorporated
in the first and second stages of the pipeline, respectively, to
implement the vector and elementary functions. However, the
elementary functions required a BMUL with only 1 LOGC,
while the vector operations needed 8 LOGCs without a BMUL.
Thus, in that approach, the BMUL was a waste for the vector
operations and 7 LOGCs were useless for the elementary
functions. In order to avoid these redundancies, we propose an
adaptive number conversion (ANC) scheme, which divides the
8 LOGCs into 2 groups and places 4 in E1 and the other 4 in
E2, and only converts 4 FLP operands in E1 and the other 4
are converted in E2 only if the operation is a vector operation.
Thus, the BMUL in E2 is made into a programmable multiplier
(PMUL) that can be programmed into a BMUL or 4 LOGCs,
by just adding 64-byte 15-entry LOGC coefficient table to
the BMUL and sharing the adder tree composed of carry save
adders (CSAs) and a carry propagate adder (CPA), as shown in
Fig. 5. The PMUL is also made programmable into 4 ALOGCs
for the matrix-vector multiplication by adding 56-byte 8-entry
ALOGC coefficient table.

Even though the PMUL introduces the multiplexers (MUXes)
to share the adder tree among the 32 b 24 b BMUL, 4 32 b

TABLE I
THE AREA AND TIMING COMPARISON BETWEEN PMUL AND OTHER UNITS

6 b BMUL, 4 LOGC, and 4 ALOGC, it saves area by 38% from
the separate implementation of all these units. The additional
MUXes in the PMUL increases the timing by 16% from that of
BMUL. The area and timing between the PMUL and other units
are summarized in Table I.

B. Multifunction Unit

The floating-point datapath used in our processor is de-
scribed in this section. The proposed unit unifies matrix-vector
multiplication (MAT), vector operations (VECs) such as vector
multiplication (MUL), division (DIV), square-root (SQRT),
multiply-add (MAD), and dot-product (DOT), and elementary
functions (ELMs) including power (POW), logarithm (LOG),
and trigonometric functions (TRGs) into a single 4-way arith-
metic unit based on the HNS. It performs the matrix-vector
multiplication in every 2 cycles and achieves a single-cycle
throughput for all the other operations.

1) Overall Organization: The functional unit is organized as
4 channels and 5 pipeline stages of E1 through E5 as shown in
Fig. 6. The 4 of 32-bit FLP input operands are converted into the
logarithmic numbers through the 4 LOGCs in the E1 stage. For
the ANC, the E2 stage includes the PMUL, which can be used
for one of the BMUL in the logarithmic domain for elemen-
tary functions including power and various trigonometric func-
tions, 4 LOGCs for vector operations such as vector multiplica-
tion, division, and dot-product or 4 ALOGCs for matrix-vector
multiplication.

In this way, the number of LOGCs in E1 stage is reduced
to 4, which was 8 in [13]. In E3 stage, 4 adders are provided
in logarithmic domain for the vector operations and their opera-
tional results are converted into the FLP through the 4 ALOGCs.
The FLP programmable adder (PADD) in the E4 stage can be
programmed into a 5-input FLP adder tree or a 4-way 2-input
single-instruction multiple-data (SIMD) FLP adder according to
target operations. The E5 stage provides a SIMD FLP accumu-
lator for the final accumulation required for the matrix-vector
multiplication.

2) Matrix-Vector Multiplication: The multiplication of 4
4-matrix and 4-element vector is required for 3-D geometry
transformations. As shown in (1), it requires 16 multiplications
and 12 additions.

(1)
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Fig. 6. Floating-point unified arithmetic unit.

In order to implement (1) on our 4-way arithmetic unit, the
expression (1) can be converted into an HNS operation as (2),
which requires 20 LOGCs, 16 adders, 16 ALOGCs, and 12 FLP
adders.

(2)

In the implementation of (2), the log-converted coefficients
can be pre-converted into the logarithmic domain and be used

as constants during the geometry processing since the coeffi-
cients of a geometry transformation matrix are fixed during the
processing of a 3-D object. Thus, the matrix-vector multiplica-
tion requires only 4 LOGCs for converting the 4-element vector,
16 adders in the logarithmic domain, 16 ALOGCs, and 12 FLP
adders. These can be implemented in 2 phases on our 4-way
arithmetic unit as illustrated in Fig. 7.

In this way, 8 adders in logarithmic domain and 8 ALOGCs are
required per phase. The CPAs in E1 and E3 stages can be used for
the 8 adders and the 8 ALOGCs can be obtained from 4 ALOGCs
in E2 stage by programming the PMUL into 4 ALOGCs together
with the 4 ALOGCs in E3 stage. The 4 multiplication results
from the ALOGCs in E2 stage and the other 4 from the E3 stage
are added together in the E4 stage by programming the PADD
into 4-way SIMD FLP adder to get the first phase result. With
the same process repeated, the accumulation with the first phase
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Fig. 7. Two-phase matrix-vector multiplication scheme.

result in E5 stage completes the matrix- vector multiplication.
Thus, the matrix-vector multiplication is accomplished in every
2 cycles on this 4-way functional unit.

3) Vector Operations: The vector multiplication, division,
square root, and multiply-add can be represented by a single
generic operation like in [13] and converted into the HNS as (3).

(3)

Since the HNS operation in (3) requires 2 LOGCs for 2
operand conversions per channel, the PMUL is programmed
into 4 LOGCs to make the 8 LOGCs for 4 channels together
with the 4 LOGCs in E1 stage. This operation achieves the
4-way vectored implementation of the division, the square root,
and the division by square root as well without any additional
cycles, which is useful for processing vector normalizations.
For vector addition and subtraction, the CPAs in E1 stage are
also made to operate as the FLP adders. This approach reduces
the latencies for vector addition and subtraction since they do
not need to wait until E4 stage. The dot-product can also be
converted into the HNS as (4).

(4)

The HNS operation in (4) is implemented with the vector
multiplication followed by the final summation of the product
terms. For the final FLP summation, the FLP PADD is pro-
grammed into a single 5-input FLP adder tree as depicted in
Fig. 8. Since the exponent can be determined directly from the
value in logarithmic domain, the exponent logic for the sum-
mation tree can proceed in parallel with the ALOGCs in the E3
stage. When the mantissa path is programmed into a summation
tree, the shift amount for each mantissa alignment is determined
with regard to the maximum exponent to avoid repeated normal-
ization and denormalization circuits in every level of the sum-
mation tree. To reduce the critical path of the exponent logic, the
duplicated subtractors are used in parallel with the final com-
parator to compute the alignment values speculatively for both
cases of the comparison results. The actual alignment values are
determined when the comparison result becomes available.

4) Elementary Functions: Since the power function is con-
verted into the multiplication in the logarithmic domain, it re-
quires multipliers, which can be implemented by programming
the PMUL into BMULs. The trigonometric functions can be
represented by certain Taylor series expansions and they can be
approximated by a single generic power series like (5).

(5)

Since the s in (5) are small integer values that can be
represented within 6 bits, this power series requires a 4-way
32 b 6 b multiplier in the logarithmic domain and final FLP
summation of the power terms. This can be implemented by
programming the PMUL into a 4-way 32 b 6 b BMUL and
the FLP PADD into a 5-input FLP summation tree, as was done
for dot-product in previous section.

The power function can also be implemented using a mul-
tiplier as (6).

(6)

This expression requires a 32 b 24 b multiplier in the log-
arithmic domain, which can be implemented by programming
the PMUL into a single 32 b 24 b BMUL. The result from this
BMUL should be shifted by in the logarithmic domain as de-
picted in the channel 3 of E3 stage in Fig. 6. Fig. 9 illustrates the
complete PMUL which can be programmed into 4 LOGCs for
vector operations, a single 32 b 24 b BMUL for power func-
tion, a 4-way 32 b 6 b BMUL for trigonometric functions or
4 ALOGCs for matrix-vector multiplication.

In order to handle the arithmetic exceptions, the Z or S bit
of the LNS format is set when the value of an operand is found
to be zero or negative. The final computation result is adjusted
according to the Z and S bits of the operands as specified in
Table II. In our design, the overflow of the arithmetic result is
saturated to the maximum representable value and the NaN does
not have a specific encoding as in [14], since our target applica-
tion is focused on the 3-D graphics.

In summary, a power- and area-efficient multifunction unit
was proposed for the matrix, vector, and elementary functions.
It achieves a single cycle throughput for all the supported op-
erations except for the matrix-vector multiplication which takes
2 cycles per result. The proposed ANC scheme and the adoption
of the logarithmic arithmetic enabled the unified implementa-
tion of various arithmetic operations on a single 4-way unit and
the high-throughput computations.

III. PROCESSOR ARCHITECTURE

In this section, our processor architecture is described in
terms of the instruction set architecture (ISA) and microar-
chitecture. The processor is based on the 4-way vector SIMD
architecture and has 5 groups of vector register files: one
16-entry 4-way 8-bit integer register file (INTR) and four
4-way 32-bit FLP register files including 32-entry vector
input register (VIR), 32-entry general purpose register (GPR),
256-entry constant memory (CMEM), and 16-entry vector
output register (VOR). The INTR is used for integer operations
such as register indexing, loop counting, etc. The VIR supplies
input data streams to the processor core. The GPR stores
temporary processing results and the CMEM supplies constant
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Fig. 8. FLP programmable adder (PADD).

TABLE II
THE EXCEPTION HANDLING SCHEME

coefficients during a program run. The final results are stored in
the VOR so that the following stream kernels start with them.

A. Instruction Set Architecture

1) Dual Instruction Formats: Although the proposed pro-
cessor is based on a RISC machine architecture, its ISA has two
types of instruction formats: 32-bits and 64-bits, optimized for
their different usages. In this ISA, the 32-bit format is for the in-
teger (INT) and control instructions, while the 64-bit one is used
for the FLP instructions. This separated format rather than using
a single 64-bit one for all types of instructions results in the re-
duced instruction memory (IMEM) size and its power dissipa-
tion. Fig. 10 shows the instruction formats of this processor.

2) Embedded Index Calculations: The ISA supports the in-
dexed addressing mode for the operand fetches from the FLP
instructions. This addressing mode is useful for the simple cal-
culations of the FLP register indices determined dynamically in
runtime. For example, in a loop execution, the register indices
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Fig. 9. Complete diagram of programmable multiplier (PMUL).

for FLP operands can be calculated dynamically as a simple
function of the loop counter as follows:

� � � �

Thus, the INT instructions calculating the FLP register indices
can be embedded into FLP operand fields of the FLP instruc-
tions for efficient index computations, as depicted in Fig. 10.
The ‘idxD’, ‘idxA’, ‘idxB’, and ‘idxC’ fields enable the indexed
addressing mode. In this case, index calculations in INT are fol-
lowed by the FLP computation and are carried out without any
influence on pipeline throughput and additional code memory
space.

3) Instruction Set Extension: The ISA can be extended by
user defined instructions according to the application require-
ments. This is accomplished by exploiting the reconfigurability
of the datapath proposed in Section II. For this reason, the con-
figuration instruction (CFG) is provided as a 4-operand instruc-
tion that has a configuration register as its source operand, rep-
resented as ‘srcD’ in Fig. 10(d). This scheme is effective in
expanding the limited instruction space of our processor. For
example, various trigonometric functions supported in the data-
path can be utilized by a single CFG instruction with an ap-
propriate configuration data rather than packing all the trigono-
metric instructions into the limited instruction space.
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Fig. 10. Instruction formats of the proposed processor. (a) 32-bit INT vector instructions. (b) 64-bit FLP instructions with 2 operands. (c) 64-bit FLP instructions
with 3 operands. (d) 64-bit FLP instructions with 4 operands (i.e., CFG instruction).

4) Operand Modifiers: Since all the channel mismatches be-
tween the operands and the SIMD hardware should be resolved
before processing the data in SIMD architectures, these kinds
of pre-processing can severely limit speedup of the SIMD pro-
cessors [15]. Thus, the swizzling fields for the source operands
are packed into our instruction format even if it takes a large bit
widths in the instruction format. Likewise, the negation fields
like ‘nA’, ‘nB’, and ‘nC’ and fields for absolute values such as
‘aA’, ‘aB’, and ‘aC’ found in Fig. 10 are also included as source
modifiers to improve the SIMD performance.

B. Microarchitecture

Fig. 11 shows the microarchitecture of the proposed pro-
cessor. The FLP operands are fetched from the GPR, VIR or
CMEM and the result is written back to the GPR or the VOR.
The FLP operands can be swizzled, negated, and converted into
the absolute values by the source modifiers. It has a 64-byte
INT register file and FLP register files including 512-byte
VIR, 512-byte GPR, 4 kB CMEM, and 256-byte VOR. The
arithmetic unit proposed in Section II is adopted for the FLP
unit of this processor. The data memory (DMEM) is embedded

to support the procedure calls in shader programs. The proce-
dure call stacks can be implemented using this memory and
thus, the GPR data can be saved in a call stack whenever a
procedure call is made. Its 2 kB capacity can provide enough
space for deep procedure calls and the internal scratch pad
memory as well. For the integer data, parts of the CMEM can
be used for preserving them since the CMEM, rather than the
DMEM, is directly visible as a storage for the integer path in
this microarchitecture.

1) Pipeline Control: The 10-stage pipeline of the proposed
processor is depicted in Fig. 12. Since an instruction can be ei-
ther 32 bits or 64 bits, the MSB of the instruction gives the in-
formation of instruction format. The fetch unit always fetches
a 64-bit word and makes a 64-bit instruction packet by taking
32 bits from current fetch and padding it with 32-bit zeros for
32-bit instructions. For 64-bit instructions, it takes 32 bits from
current and previous fetches, respectively, or the whole 64 bits
from current fetch. The finite state machine (FSM) in the in-
struction decode (ID) stage generates the interlock control sig-
nals for multi-cycle operations like the matrix-vector multipli-
cation. All of the dependencies and hazards among the issued in-
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Fig. 11. Microarchitecture of the proposed processor.

structions are identified and scheduled using the register score-
boarding mechanism [6], [16].

2) Pipeline Datapath: This processor has a cascade architec-
ture of 4-way 8-bit INT and 4-way 32-bit FLP datapaths to im-
plement the embedded index calculations of the FLP operands
without requiring additional clock cycles for them. For flex-
ible index calculations, this processor includes a 4-way 8-bit
SIMD integer ALU and a 64-byte 16-entry integer register file
(INTR). The 4 of 8-bit results from this unit can address 3 source
operands and 1 destination of an FLP operation.

When an INT multiplication is required for the index calcu-
lation, the PMUL in FLP arithmetic unit is programmed into
a 32 b 24 b integer multiply-add (IMAD) unit. The vector
SIMD multiplication in FLP unit is not used for this purpose
since the computation errors are not acceptable for the index
calculations.

3) Datapath Reconfiguration: The FLP unit in Section II
has several MUXes to unify various arithmetic operations into
a single arithmetic unit. In this architecture, the FLP unit re-
veals all of its control signals for the MUXes to the programmer
so that arbitrary operations can be implemented on demand by
programming the 91-bit control signals. Using this scheme, sev-
eral optimizations are possible. For instance, the operation of

, required for vector normalization, can be pro-
grammed using the CFG instruction such that the squares can be

implemented by right-shifts of the log-converted values rather
than the addition of two identical log-converted values. Thus,
the accumulation of the logarithmic conversion errors can be
reduced. These kinds of configuration data are stored in the
64-byte 4-entry configuration register file (CFR) and accessed
as an operand from the CFG instruction. In consequence, the
configuration can be changed in a single clock cycle.

4) Operand Forwarding: The operand forwarding is a way
to improve the throughput of a processor pipeline. In this pro-
cessor, the intermediate results in the logarithmic domain can be
directly forwarded to the next instruction or stored into the FLP
register file without going through the entire antilogarithmic
conversion. For example, as in (7), the consecutive FLP opera-
tions without requiring final FLP additions, the antilogarithmic
and logarithmic conversions cancel each other. Thus the inter-
mediate logarithmic value from the previous FLP operation can
be directly forwarded to the logarithmic domain of the next FLP
operation bypassing the antilogarithmic and logarithmic con-
verters of two operations, as illustrated in Fig. 13.

(7)
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Fig. 13. Operand forwarding in logarithmic domain.

Fig. 12. Pipeline stages of the proposed processor.

This operand forwarding scheme improves the overall pipeline
throughput since it finishes the previous operation in advance
and starts the next operation immediately. The computation
error is also reduced from bypassing the repeated antiloga-
rithmic and logarithmic conversions, which are the sources of
the computation errors.

In this section, the architecture of the proposed processor has
been described. Its ISA and microarchitecture are co-optimized
for the power and area efficiencies. Its ISA supports two types of
instruction formats to make better use of the instruction memory
space and power budgets. It also supports the embedded index
calculations for the FLP register indices determined dynami-
cally at runtime. Its microarchitecture supports the operand for-
warding method in the logarithmic domain and the datapath re-
configuration scheme to reduce the latencies and computation
errors.

IV. PERFORMANCE EVALUATIONS

A. Accuracy Evaluation

The errors of the operations are quantified for the worst case
conditions as listed in Table III. Each operation is tested for
10,000 vectors randomly selected from [0, 1), the trigonometric
functions are tested for the vectors from . The operations
that consist of the MUL and the ADD, for example, MAT, MAD,
and DOT, exhibit the maximum errors at the same point with the
MUL since the ADD does not cause the computation error.

Fig. 14 shows the comparison of the scenes from the FLP and
HNS libraries, respectively. The test model consists of 5,878 tri-
angles and the screen size is QVGA i.e., 320 240. The test
model was rendered from the OpenGL TnL kernel with three
light sources to show the accumulated error effects for the mix-
ture of various operations. The test scenes are compared in terms
of the peak-signal-to-noise ratio (PSNR) and the result shows
that the PSNR of 25.94 dB, which is considered to be accept-
able for the wireless applications [17]. Thus, the computation
error from our arithmetic unit is within a tolerable range for the
handheld systems with limited display size.

B. Performance Comparison

1) Datapath: In Table IV, we quantified the latency of our
direct computation approach for the datapath design and com-
pared it with the table-based approach for several graphics ker-
nels. The table-based functional unit, in this comparison, is as-
sumed to have four MAC units to implement the vector opera-
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TABLE III
SELECTED FLP ARITHMETIC INSTANCES OF THE PROPOSED PROCESSOR

Fig. 14. Comparison of test scenes. (a) Scene from FLP library. (b) Scene from HNS library.

TABLE IV
LATENCY COMPARISON BETWEEN TABLE-BASED AND OUR DIRECT

COMPUTATION METHODS

tions and a lookup table (LUT)-based interpolator for the ele-
mentary function interpolations, which is a common approach
adopted for graphics processors [6]. The latency and throughput
for each operation are assumed to be seven and one, respectively,
according to the reported cycle counts for their operations. The
tested graphics kernels include the 3-D geometry transforma-
tion, full OpenGL TnL [18], Cook-Torrance (C-T) [19], and
Oren-Nayar (O-N) [20] lighting models. The C-T model pro-
duces improved specular lighting for metals and plastics, which
requires several power function evaluations. The O-N model en-
hances the diffuse lighting model for rough faces and shows the

TABLE V
COMPARISON WITH OTHER GEOMETRY PROCESSORS

outstanding performance improvement from our processor be-
cause it includes several trigonometric function computations
which are not directly supported from others [3]–[7]. As shown
in Table IV, our approach achieves 50%, 37.6%, 32.6%, and
45.5% cycle count reductions for the each kernel compared with
the table-based method.

2) Processor: In Table V, the performance, power, area,
clock frequency, and process technology of the proposed loga-
rithmic stream processor are compared with those reported in
the previous works. Here, the comparison is made for the 3-D
geometry transformation since it is the common test case for
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Fig. 15. Cycle count comparison.

which the performance and power dissipation data are reported
from the compared works.

The latencies for the full OpenGL TnL, C-T, and O-N
kernels are also compared with others in Fig. 15 to show the
performance characteristics for more serious graphics kernels.
In this comparison, the latencies for other works are estimated
from the reported cycle counts of their instruction set or from
the description of their pipeline architectures. Our processor
achieves 19.1%, 23.9%, and 49.3% latency reductions for the
OpenGL TnL, C-T, and O-N kernels, respectively, from the
latest work [7].

V. EMBEDDING INTO A GRAPHICS SoC

A. Handheld GPU

The proposed processor is integrated into a handheld GPU as
its vertex shader [8], [18]. In this section, the architecture, chip
implementation, and power management of the handheld GPU
are described and compared with related works.

1) SoC Architecture: Fig. 16(a) shows the overall architec-
ture of our handheld GPU. It consists of an ARM10-compat-
ible 32 b RISC processor, a 128 b vertex shader (VS), and a
rendering engine (RE) for the processing of application, geom-
etry, and rendering stages, respectively, and it also incorporates
three power management units (PMUs) for power management
of these modules. The RISC works as the main control processor
and runs application programs producing the geometry transfor-
mation matrices for 3-D objects. The VS moves the matrix from
the matrix FIFO to its CMEM and then performs various geom-
etry operations on fetched vertices by running vertex shading
kernels from IMEM. The rendering engine fills up the pixels in-
side the triangle whose vertices come from the stream cache.

Since the objects in a scene are composed of a number of tri-
angles and these triangles again consist of a number of pixels,
the workloads for the RISC, VS, and RE, which operate per ob-
ject, per triangle, and per pixel, respectively, can be completely
different. Therefore, the RISC, VS, and RE are divided into dif-
ferent power domains and their frequencies and voltages are
controlled separately according to the individual workloads. We
divide the GPU into three different power domains of RISC, VS,
and RE domains as illustrated in Fig. 16(a). The PMU for each
power domain is based on the PLL structure and embeds a linear

regulator inside the loop to synchronize the scaling of clock fre-
quency and supply voltage [8]. Level shifters and synchronizers
are inserted between the power domains to adjust signal levels
and avoid the metastability of transferred data. The 4 kB matrix
FIFO and 64-bytes index FIFO are also used across the modules
to keep the throughput stable despite the response delay of the
PMUs. In these FIFOs, the Gray coding, where two consecutive
values differ in only one bit, is used for the read/write pointer for
reliable operation between different read/write clock domains.

2) Stream Cache: In the geometry processing, a stream cache
is provided to reuse the previously processed vertices without
executing the TnL routine. The stream cache consists of a cache
controller and a physical entry memory as shown in Fig. 16(b).
It is implemented using the existing domain interface FIFO be-
tween the VS and the RE domain by simply augmenting the
cache replacement capability without causing overheads. The
4 kB physical entry memory contains 16 VORs and shows 58%
hit rate. Once a vertex is found in this cache, the TnL is achieved
in a single cycle.

B. Chip Implementation

The SoC is fabricated using 0.18 m 6-metal CMOS tech-
nology. It integrates RISC, VS, and RE into a small area of
17.2 mm and incorporates 1.57 M transistors and 29 kB
SRAM. The chip micrograph is shown in Fig. 17. The regions
taken by each module are also depicted in the figure. The
stream processor core as the VS takes 9.7 mm and dissipates
86.8 mW power consumption at 200 MHz operating frequency
and 1.8 V supply voltage. The clocks to pipeline registers are
fully gated to disable unnecessary switching under the control
of each instruction. The 2-cycle geometry transformation and
the 58% hit-rate stream cache achieve the 141Mvertices/s for
TFM and 12.1Mvertices/s for OpenGL TnL at 200 MHz clock
frequency. Fig. 18 shows the shmoo plot of the processor. The
measured waveform in Fig. 19 shows the MAT taking 2 cycles
per result and 6-cycle latency. Each input is sustained for 2
cycles due to the interlock control from the FSM in ID stage.

With the triple-domain power management scheme, the
entire chip consumes 52.4 mW when the scenes are drawn at
60 frames/s. The PMUs for the RISC and the VS cover from
89 MHz to 200 MHz with 1 MHz step and from 1.0 V to
1.8 V with 7.2 mV step while the PMU for the RE covers from
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Fig. 16. SoC architecture of the proposed handheld GPU. (a) Overall GPU architecture. (b) Stream cache organization.

Fig. 17. Chip micrograph.

Fig. 18. Shmoo plot for vertex shader.

22 MHz to 50 MHz with the 250 kHz step with the same voltage
range and step. Since all of the modules are designed with static
logic, the modules can keep running while the frequency and
voltage scale. Each PMU takes 0.45 mm and consumes less
than 5.1 mW. The maximum power consumption of the entire
chip is 153 mW when all components are running at their full

Fig. 19. Measured waveform of the MAT taking 6-cycle latency and 2 cycles
per result.

speeds: 200 MHz at 1.8 V for RISC and VS and 50 MHz at
1.8 V for RE. Table VI summarizes the features of the chip.
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TABLE VI
CHIP CHARACTERISTICS

C. Comparison

Since the area and the power overheads as well as the perfor-
mance are important factors for the handheld devices, the figure
of merit (FoM) should take them into account for its definition.
Thus, the FoM is defined as (8), in which the performance is
normalized by the area and power dissipation:

(8)

According to this FoM, the proposed stream processor core
shows 167.42 . Fig. 20 compares the
FoM with other chips, whose performance, power, and area are
listed in Table V. In terms of the proposed FoM, the proposed
stream processor shows maximum 3.65 times improvement
from the latest work [7], which incorporated 16 FLP MAC
units to speedup the matrix-vector multiplication. This work
also shows 17.5% and 22.2% performance improvement for
TFM and TnL, respectively, while reducing power and area
overheads by 44.7% and 39.4%, respectively.

By exploiting the logarithmic arithmetic, as shown in
Table VII, our GPU shows similar processing speed, area
and power dissipation to [7], while showing higher-level of
integration: it incorporates the RISC and RE as well, which are
not found in [7]. Moreover, when it does not have to operate
its full speed, the clock frequency and supply voltage of each
module can be scaled down dynamically and then it shows
50.5% power reduction from [7] when it runs at 60 fps.

VI. CONCLUSION

A high-performance, power- and area-efficient stream pro-
cessor core is proposed for a low-power 3-D graphics SoC. It

Fig. 20. Comparison of FoM.

contains a 4-way 32-bit FLP unified arithmetic unit of matrix,
vector, and elementary functions. Based on the logarithmic
arithmetic and the proposed adaptive number conversion
scheme, the unit unifies the matrix, vector, and elementary
functions into a single 4-way arithmetic platform and achieves
a single-cycle throughput for all the operations, except for the
matrix-vector multiplication which takes 2 cycles per result.
With the help of this unit and several proposed architectural
features including embedded index calculations, functional
unit reconfiguration, and operand forwarding in logarithmic
domain, the proposed processor shows 19.1% cycle count
reduction for the OpenGL TnL from the latest work.
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TABLE VII
GPU COMPARISON WITH RELATED WORKS

The stream processor core is integrated into a handheld GPU
as a programmable vertex shader to show its effectiveness. A
17.2 mm test GPU chip contains 1.57 M transistors and 29 kB
SRAM and integrates the full 3-D graphics pipeline including
an ARM-10 compatible RISC processor, a vertex shader, and
a rendering engine. In addition, it contains three power man-
agement units for its triple-domain power management policy.
The vertex shader achieves 141 Mvertices/s for the 3-D geom-
etry transformation (TFM) at 200 MHz operating frequency and
shows 17.5% performance improvement, while reducing 44.7%
and 39.4% power and area overheads, respectively, from the
latest work. It shows 3.65 times improvement in terms of our
proposed figure of merits.

The SoC is divided into triple power domains of the RISC,
VS, and RE with separate DVFS control and thereby, shows
52.4 mW power consumption when it runs at 60 fps, which is
50.5% power reduction from the latest work.
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